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(57) ABSTRACT

Breast density is a significant breast cancer risk factor mea-
sured from mammograms. Evidence suggests that the spatial
variation in mammograms may also be associated with risk.
The variation in calibrated mammograms as a breast cancer
risk factor was investigated and its relationship with other
measures of breast density was explored using full field digi-
tal mammography (FFDM) as described herein. A matched
case-control analysis was used to assess a spatial variation
breast density measure in calibrated FFDM images, normal-
ized for the image acquisition technique variation. The find-
ings indicate the variation measure is a viable automated
method for assessing breast density. Insights gained by this
work may be used to develop a standard for measuring breast
density.
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METHOD FOR ASSESSING BREAST
DENSITY

This application claims priority to U.S. Provisional Appli-
cation No. 61/423,390 filed Dec. 15, 2010, the disclosure of
which is incorporated herein by reference.

STATEMENT REGARDING FEDERALLY
FUNDED RESEARCH

This invention was made with Government support under
Grant No. CA114491 awarded by the National Institutes of
Health. The Government has certain rights in the invention.

FIELD OF INVENTION

This invention relates to a mammography; more specifi-
cally to methods of analyzing mammography results for esti-
mating breast cancer risk for related applications such as for
the detection of breast cancer.

BACKGROUND

Breast density is a significant breast cancer risk factor
measured from mammograms. To date, most work in breast
density has been performed with raw data using an operator
assisted labeling method. Although breast density is a signifi-
cant breast cancer risk factor, it is not currently used for risk
assessments in a clinical setting, partly due to lack of stan-
dardization and automation. Evidence suggests that the spa-
tial variation in mammograms may also be associated with
risk. The variation in calibrated mammograms as a breast
cancer risk factor was investigated and its relationship with
other measures of breast density was explored using full field
digital mammography (FFDM) as described herein. For addi-
tional discussion of the variation measure, see Heine, I. J. et
al. “Calibrated measures for breast density estimation,” Acad
Radiol, vol. 18, pp. 547-55, May 2011; Heine, J. J. et al., “A
Quantitative Description of the Percentage of Breast Density
Measurement Using Full-field Digital Mammography,” Acad
Radiol, vol. 18, pp. 556-64, May 2011.

There are various methods used to assess breast density.
For the most part, breast density and breast cancer associa-
tions have been developed with measurements that did not
consider the inter-image acquisition technique differences. In
particular, the operator-assisted percentage of breast density
approach (or PD) has shown repeatedly to correlate well with
breast cancer without considering the acquisition technique.
Methods for automating PD are not widely used. An alterna-
tive method of assessing breast density is to calibrate, or
adjust, for the acquisition technique differences.

Calibration should reduce unwanted measurement varia-
tion and produce a measure of mammographic density that
shows stronger associations with breast cancer than non-
calibrated methods such as PD. However, measurements
based on calibration with digitized film mammography have
produced mixed findings. Some work shows that calibration
does not produce anything beyond PD. Other work shows that
calibration strengthens the breast density associations with
film mammography. For example, using FFDM, studies have
shown that calibration can be used to both describe PD and to
develop new measures of breast density. One new measure is
calculated as the standard deviation (SD) of the calibrated
pixels within the breast area, which captures spatial variation.
This measure provided stronger associations with breast can-
cer than PD in some studies.
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The calibration produces image data normalized for the
inter-image acquisition technique differences at the pixel
level (or more coarse scales) referred to as the percent glan-
dular representation, which is a normalized effective x-ray
attenuation coefficient metric. Differences in the compressed
breast thickness, target/filter combination, x-ray tube voltage
and exposure are rectified by the calibration process. There
are many technical problems that if not addressed will intro-
duce considerable error into the calibration output.

In one study, a matched case-control analysis was used to
assess a spatial variation breast density measure in calibrated
FFDM images, normalized for the image acquisition tech-
nique variation. Three measures of breast density were com-
pared between cases and controls: (a) the calibrated average
measure, (b) the calibrated variation measure, and (c) the
standard percentage of breast density (PD) measure derived
from operator-assisted labeling. Linear correlation and statis-
tical relationships between these three breast density mea-
sures were also investigated.

Risk estimates associated with the lowest to highest quar-
tiles for the calibrated variation measure were greater in mag-
nitude [odds ratios: 1.0 (ref.), 3.5, 6.3, and 11.3] than the
corresponding risk estimates for quartiles of the standard PD
measure [odds ratios: 1.0 (ref.), 2.3, 5.6, and 6.5] and the
calibrated average measure [odds ratios: 1.0 (ref.), 2.4, 2.3,
and 4.4]. The three breast density measures were highly cor-
related, showed an inverse relationship with breast area, and
related by a mixed distribution relationship.

The three measures of breast density capture different
attributes of the same data field. These findings indicate the
variation measure is a viable automated method for assessing
breast density. Insights gained by this work may be used to
develop a standard for measuring breast density.

SUMMARY

The present invention is directed to methods of assessing
breast density for breast cancer risk assessment applications.
The methods include receiving digital image data (including
FFDM and digitized film as well as other forms of imaging)
including a plurality of pixels; calibrating the digital image
data; performing a statistical analysis on the calibrated digital
image data; and associating the statistically analyzed digital
image data with a measure of risk for breast cancer.

In accordance with one aspect of the invention, performing
a statistical analysis may include calculating a mean of pixel
values of the plurality of pixels.

In accordance with another aspect of the invention, per-
forming a statistical analysis may include calculating a varia-
tion of pixel values of the plurality of pixels. For example,
calculating a variation may be accomplished using at least
one of a second central moment, a third central moment or a
fourth central moment and including all central moments of
integer and fractional order, where fractional implies a real
number. Additionally, this includes all non-central moments
of all order. Additionally, calculating a variation of pixel
values of the plurality of pixels may include calculating the 1
norm or the ' norm and all order moments derived from the 1>
and 1' norm forms. Alternatively, a variation of pixel values of
the plurality of pixels may include calculating combinations
of the measures defined above. For example, calculating a
combination measure based on results of the ' norm (i.e.,
PG)) and the 1* norm (i.e., PG,) may be accomplished using
the Gram-Schmidt orthogonalization process, Principal
Component Analysis, partial least squares as well as nonlin-
ear approaches and/or kernel based methods, but not limited
to these combination method examples.
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In accordance with an aspect of the invention, the digital
image data may be raw image data obtained by digital mam-
mography.

In accordance with another aspect of the invention, the
digital image data may have been converted from mammog-
raphy results recorded on film.

In accordance with an aspect of the invention, calibrating
the digital image data may include adjusting for image acqui-
sition technique parameters. For example, adjusting for
image acquisition technique parameters may be accom-
plished by adjusting for at least one of variation in target/filter
combination, X-ray tube voltage, radiation exposure and com-
pressed breast thickness.

In accordance with one feature of the invention, calibrating
the digital image data may be performed pixel-by-pixel.
Alternatively, calibrating the digital image data may be per-
formed by calculating an average pixel value of an nxn pixel
region, and then calibrating the average pixel value.

In accordance with one aspect of the invention, the digital
image data may be an image having a breast tissue arca and a
background area, and the method may further include seg-
menting the breast tissue area from the background area of the
image. The breast tissue area may include adipose and glan-
dular regions. In one example, segmenting may include
assigning pixel values within the breast tissue area a first
value and assigning pixel values within the background area
a second value.

In accordance with another aspect of the invention, the
method may include positioning a radial coordinate system
origin at a side of the image at a first direction centroid
position estimated from the segmented image.

In accordance with yet another aspect of the invention, the
method may include eroding a percentage of the image
between the radial coordinate system origin and the perimeter
of the breast area along a radial direction.

In accordance with another aspect of the invention, the
percentage is in a range between 0 and 35%. However, erod-
ing a different percentage of the image may also be accept-
able.

In second example implementation, methods include
receiving digital image data (including FFDM and digitized
film as well as other forms of imaging) including a plurality of
pixels; performing a statistical analysis on the digital image
data; and associating the statistically analyzed digital image
data with a measure of risk for breast cancer.

In accordance with one aspect of the second example
implementation, performing a statistical analysis may
include calculating a variation of pixel values of the plurality
ofpixels. For example, calculating a variation may be accom-
plished using at least one of a second central moment (or
square root of this moment), a third central moment, fourth
central moment or all higher order central and non-central
moments of all order including fractional or non-integer
orders for all moments. We use fractional to include all real
numbers. Calculating a variation of pixel values of the plu-
rality of pixels may include calculating an 1> norm and an I*
norm and all orders using the 1' norm form as the base.
Alternatively, a variation of pixel values of the plurality of
pixels may include calculating combinations of measures
based on the results of the I* norm and the 1' norm combina-
tion study. For example, combination methods may include
the Gram-Schmidt orthogonalization process, Principal com-
ponent analysis, partial least squares analysis as well as non-
linear approaches and/or kernel based methods, but not lim-
ited to these combination methods.
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In accordance with an aspect of the invention, the digital
image data may be raw image data obtained by digital mam-
mography.

In accordance with another aspect of the invention, the
digital image data may have been converted from mammog-
raphy results recorded on film.

In accordance with one aspect of the invention, the digital
image data may be an image having a breast tissue arca and a
background area, and the method may further include seg-
menting the breast tissue area from the background area of the
image. The breast tissue area may include adipose and glan-
dular regions. In one example, segmenting may include
assigning pixel values within the breast tissue area a first
value and assigning pixel values within the background area
a second value.

In accordance with another aspect of the invention, the
method may include positioning a radial coordinate system
origin at a side of the image at a first direction centroid
position estimated from the segmented image.

In accordance with yet another aspect of the invention, the
method may include eroding a percentage of the image
between the radial coordinate system origin and a perimeter
of'the breast area along a radial direction.

In accordance with another aspect of the invention, the
percentage is in a range between 0 and 35%. However, erod-
ing a different percentage of the image may also be accept-
able.

In accordance with a third example implementation of the
invention, the methods may be implemented by a non-transi-
tory computer-readable storage medium having computer-
executable instructions stored thereon for assessing breast
density for breast cancer risk applications by analyzing digi-
tal image data (including FFDM and digitized film as well as
other forms of imaging) that, when executed by a processor,
cause the processor to perform a statistical analysis on the
digital image data; and associate the statistically analyzed
digital image data with a measure of risk for breast cancer.

In accordance with one aspect of the invention, a statistical
analysis may include calculating a mean of pixel values of the
plurality of pixels.

In accordance with another aspect of the invention, a sta-
tistical analysis may include calculating a variation of pixel
values of the plurality of pixels. For example, a variation may
be calculated using at least one of a second central moment, a
third central moment or a fourth central moment and includ-
ing all order central and non-central moments, where the
order includes all real number orders. Additionally, calculat-
ing a variation of pixel values of the plurality of pixels may
include calculating the 1* norm or the 1' norm and all order
moments derived from the 1% and 1' norm forms. Alternatively,
a variation of pixel values of the plurality of pixels may
include calculating combinations of the measures defined
above. For example, calculating a combination measure
based on results of the I* norm (i.e., PG,) and the I* norm (i.e.,
PG,) may be accomplished using the Gram-Schmidt orthogo-
nalization process, Principal component analysis, partial least
squares as well as nonlinear approaches and/or kernel based
methods, but not limited to these combination method
examples.

In accordance with an aspect of the invention, the digital
image data may be raw image data obtained by digital mam-
mography.

In accordance with another aspect of the invention, the
digital image data may have been converted from mammog-
raphy results recorded on film.

In accordance with yet another aspect of the invention, the
non-transitory computer-readable storage medium may
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include further computer-executable instructions stored
thereon that, when executed by the processor, cause the pro-
cessor to calibrate the digital image data.

In accordance with an aspect of the invention, calibrating
the digital image data may include adjusting for image acqui-
sition technique parameters. For example, adjusting for
image acquisition technique parameters may be accom-
plished by adjusting for at least one of variation in target/filter
combination, X-ray tube voltage, radiation exposure and com-
pressed breast thickness.

In accordance with one feature of the invention, calibrating
the digital image data may be performed pixel-by-pixel.
Alternatively, calibrating the digital image data may be per-
formed by calculating an average pixel value of an nxn pixel
region, and then calibrating the average pixel value.

In accordance with one aspect of the invention, the digital
image data may be an image having a breast tissue arca and a
background area, and the method may further include seg-
menting the breast tissue area from the background area of the
image. The breast tissue area may include adipose and glan-
dular regions. In one example, segmenting may include
assigning pixel values within the breast tissue area a first
value and assigning pixel values within the background area
a second value.

In accordance with another aspect of the invention, the
method may include positioning a radial coordinate system
origin at a side of the image at a first direction centroid
position estimated from the segmented image.

In accordance with yet another aspect of the invention, the
method may include eroding a percentage of the image
between the radial coordinate system origin and a perimeter
of the breast area along a radial direction.

In accordance with another aspect of the invention, the
percentage is in a range between 0 and 35%. However, erod-
ing a different percentage of the image may also be accept-
able.

Additional features and advantages of the invention will be
made apparent from the following detailed description of
illustrative embodiments that proceeds with reference to the
accompanying drawings. For example, in accordance with
other aspects of the invention, the risk measure may include
any combination of order measures discussed above.

BRIEF DESCRIPTION OF THE DRAWINGS

For a fuller understanding of the invention, reference
should be made to the following detailed description, taken in
connection with the accompanying drawings, in which:

FIG. 1 illustrates example images created by a study
FFDM unit used as raw image surrogates for display purposes
only;

FIG. 2 is a table of patient characteristics from a first
example study;

FIG. 3 is a table of breast density measurements in asso-
ciation with breast cancer from the first example study;

FIG. 4 is a graph illustrating the percent glandular breast
density measure and the percent glandular standard deviation
breast density measure regression analysis from the first
example study;

FIG. 5 is a table of regression parameters for cases and
controls from the first example study;

FIG. 6 is a graph illustrating the breast area and the percent
glandular breast density measure regression analysis from the
first example study;

FIG. 7 is a graph illustrating the breast area and the percent
glandular standard deviation breast density measure regres-
sion analysis from the first example study;
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FIG. 8 is a graph illustrating glandular and adipose percent
glandular ensemble probability density functions from the
first example study;

FIG. 9 is a table of breast density measurements in asso-
ciation with breast cancer using raw mammograms without
calibration from the first example study;

FIG. 10 illustrates additional example images created by a
study FFDM unit used as raw image surrogates for display
purposes only;

FIG. 11 is a table of patient characteristics from a second
example study;

FIG. 12 is a table of breast density measurements in asso-
ciation with breast cancer from the second example study;

FIG. 13 is a graph illustrating the breast area histogram
from the second example study;

FIG. 14 is a graph illustrating the percent glandular breast
density measure and the raw image mean value regression
analysis from the second example study;

FIG. 15 is a graph illustrating the percent glandular stan-
dard deviation breast density measure and the raw image
mean value regression analysis from the second example
study;

FIG. 16 is a table of patient characteristics from a third
example study;

FIG. 17 is a table of breast density measurements in asso-
ciation with breast cancer from the third example study;

FIG. 18 is a table of meta-analysis from the third example
study;

FIGS. 19A and 19B are graphs illustrating an association
between the percent glandular standard deviation breast den-
sity measure and the percent density measure;

FIG. 20 is a table of breast density measurements in asso-
ciation with breast cancer using the I* (i.e., PG, ) vector norm;
and

FIG. 21 is a table of breast density measurements in asso-
ciation with breast cancer using a combination of the 1* vector
norm and the 1! vector norm (i.e., PG, and PG, respectively).

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

In the following detailed description of the preferred
embodiments, reference is made to the accompanying draw-
ings, which form a part hereof, and within which are shown
by way of illustration specific embodiments by which the
invention may be practiced. It is to be understood that other
embodiments may be utilized and structural changes may be
made without departing from the scope of the invention.
First Example Study—Calibrated Measures for Breast Den-
sity Estimation
Introduction

Breast density measured from mammograms is a signifi-
cant breast cancer risk factor. The association between breast
density and breast cancer has been explored for many years.
The earlier work in breast density used an observational four/
five category rating of mammograms based on patterns of
increasing risk. These earlier pattern measures of risk were
virtually supplanted by the percentage of breast density (PD)
measure developed by later researchers. More recently, the
pattern analysis has gained attention using a different
approach in comparison with the earlier observational meth-
ods. Rather than investigating the raw data directly, mammo-
graphic patterns (or projected breast structure) have been
investigated with various textural related measures. For the
most part, these are summary measures that include fractal
analysis, features generated from applying various filtering
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methods, and co-occurrence features. Some of these mea-
sures show associations with breast cancer similar to that of
the standard PD measure.

There are various methods used to assess breast density.
The operator-assisted PD measure has demonstrated repeat-
edly to correlate well with breast cancer without considering
the x-ray imaging acquisition influences. Another approach
involves calibrating for the inter-image acquisition technique
variation to produce normalized data representations. There
is little published work showing the efficacy of calibrating
mammograms for breast cancer risk assessments using breast
cancer status as the endpoint comparison. Some work indi-
cates that calibration measures do not produce stronger breast
cancer associations than that of the standard operator-assisted
PD measure. Other work indicates calibration may be useful
for describing the information captured by the PD measure
and for automating its measurement. If calibration can be
optimized to improve the precision with which breast density
is measured, a more accurate estimate of the magnitude of
association between breast density and breast cancer may be
obtained.

Here, the spatial variation in mammograms that were cali-
brated to account for the x-ray acquisition technique differ-
ences was investigated using FFDM. The calibration method
was developed previously. See Kauthold, J. et al., “A calibra-
tion approach to glandular tissue composition estimation in
digital mammography,” Med Phys, vol. 29, pp. 1867-80,
August 2002. The calibration adjusts for variations in the
target/filter combination, x-ray tube voltage, radiation expo-
sure, compressed breast thickness, etc. to produce a normal-
ized pixel value representation referred to as percent glandu-
lar (PG) that is equivalent to a normalized effective x-ray
attenuation coefficient representation spanning this pixel
value range (0-100). The calibration can be applied at the
pixel or local level, which supports analyzing the calibrated
pixel distribution characteristics within a given image.

For example, the calibration methods based on phantom
imaging were initially developed without patient data. See
Heine, J. J. et al., “Effective x-ray attenuation coefficient
measurements from two full field digital mammography sys-
tems for data calibration applications,” Biomed Eng Online,
vol. 7,p. 13, Mar. 28 2008; Heine, J. J. et al., “Effective x-ray
attenuation measurements with full field digital mammogra-
phy,” Med Phys, vol. 33, pp. 4350-66, November 2006. Cali-
bration curves were developed as a function of the acquisition
technique, such as target/filter combination, x-ray tube volt-
age, radiation exposure, compressed breast height, etc. For
example, to calibrate a mammogram, the acquisition tech-
nique parameters are read from the image header-file, and
then the proper mapping from the calibration curves are
found. The calibration methodology requires rigid breast tis-
sue equivalent (BTE) phantoms. The calibration curves were
developed from imaging these BTE phantoms. The BTE
nomenclature implies these phantoms attenuate x-rays for the
energies used in mammography equivalent with their respec-
tive breast tissue counterparts (equivalent implies similar to
and not exact). The BTE phantoms are rigid, have a large
surface area that substantially covers the detector, and have
exact heights (1 mm, 2 mm, 1 cm, and 2 cm). Combinations
of'these are used to span compression heights ranging from 1
mm through 7 cm, for example. 100% adipose and 100%
glandular BTE phantoms were purchased from Computer-
ized Imaging Reference Systems (CIRS, Norfolk Va.) for use
in the study.

Additionally, preliminary validation (again without patient
imaging) of the calibration principle used an alternative two-
component system (alternative to the adipose—glandular two
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component system discussed above) with deformable phan-
toms (i.e., water balloons) filled with water and oil. This
alternative two-component system was utilized along with a
method to correct for the breast compression height variation
(or error). See Heine, J. J. et al., “Effective radiation attenu-
ation calibration for breast density: compression thickness
influences and correction,” BioMedical Engineering Online,
vol. 9, p. 73, 2010.

In addition, the compression paddle bulge and warp were
modeled with the deformable phantoms. To model the slant
on the compression paddle, additional modified (i.e., custom-
ized) BTE phantoms from CIRS were purchased. CIRS bev-
eled one face of the phantoms (slant phantoms) with various
inclination angles.

The calibration may also require a serial quality control
monitoring system. See Heine, J. J. et al., “Cumulative Sum
Quality Control for Calibrated Breast Density Measure-
ments,” Medical Physics, vol. 36 pp. 5380-5390, December
2009. Additionally, the calibration may require methods of
updating the calibration curves to account for serial drift in
the mammography unit (i.e., systematic drift in the detector,
x-ray tube, or combination of both). This serial updating
maintains the prospective calibration accuracy.

Materials and Methods

A matched case-control study was performed. Three breast
density measures and their association with breast cancer
were compared: (a) the average of the calibrated mammo-
grams [the PG measure], (b) the standard deviation of the
calibrated mammograms [the PG, variation measure], and
(c) the standard PD measure derived from the raw data (no
calibration) using an operator-assisted labeling approach.
The measurement correlation with (projected) breast area and
the inter-measure correlation were also investigated. Breast
area was used as a surrogate for breast size. The empirical
probability distributions for the calibrated fibroglandular (ab-
breviated as glandular hereafter) and adipose tissue compo-
nents were constructed. These component distributions were
used to develop a statistical relationship between the three
measures of breast density using a mixed distribution model.
The variation measure was also investigated by calculating
the standard deviation of the pixel values from the eroded
breast area of the raw image (without calibration) for com-
parison purposes.

Materials and Methods: Study Population

A description of the study population is provided. All study
images were acquired with one FFDM system. Controls were
individually matched on age, hormone replacement therapy
(HRT), and screening history to control for possible con-
founding influences. Breast cancer cases (n=123) were iden-
tified from the pool of women attending the breast clinics at
the H. Lee Moffitt Cancer Center in Tampa, Fla. To be
included as cases in the study, women had to have been
diagnosed with a first-time unilateral breast cancer (Septem-
ber 2007-July 2010). For the purpose of matching controls to
cancer cases, three groups of cases were considered based on
their screening history. Group-1 was comprised of women
that screened normal within 30 months prior to their breast
cancer diagnosis (n;=107). Group-2 was comprised of
women who had a history of normal screening that fell out-
side of the group-1 parameters, such as a woman who had a
screening in 2007 but not again until 2010 at which time she
was diagnosed with cancer (n,=12). Group-3 was comprised
of' women who were just beginning screening and were diag-
nosed at their baseline mammogram (n;=4). Case data and
images were either located by retrospective records review
(n=40) for those women with images archived on the study
FFDM unit or recruited, consented, and imaged for the study
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(n=83). The recruited case patients were those women found
to have breast cancer at screening clinics in the surrounding
area that were referred to the Moffitt Center for diagnostics or
patients that were found to have breast cancer at the Moffitt
Center that did not have mammograms archived on the study
FFDM unit. Recruited case participants were given a standard
screening type mammogram with the study FFDM unit
before their treatment commenced. Cancer status was histo-
logically verified for all cancer cases. Height, weight, and
HRT usage were abstracted from patient records.

Controls (n=123) were identified from the pool of women
undergoing breast cancer screening mammography at the H.
Lee Moffitt Cancer Center with the study FFDM unit. Con-
trols were age matched (2 years), HRT usage/duration
matched, and screening history matched with the cancer cases
using the three screening categories discussed above. For
HRT matching, non-users were defined as those women who
never used HRT as well as those that stopped using HRT two
years or more prior to when their study mammograms were
acquired. For current users, HRT usage duration (x1 year)
was used as a control matching variable. All control data and
images were located retrospectively by records review over
the same timeframe as the cases and restricted to women with
screening mammograms available on the study FFDM unit.
These archived mammograms were used as study images.
Height, weight, and HRT usage were abstracted from patient
records.

Here, two statistically similar datasets derived from the
same patients for the various explorations were used. These
are referred to as the cancer side and non-cancer side datasets.
Inthe cancer side dataset, the cancerous breast of a given case
was matched with the ipsilateral breast of the control. In the
non-cancer side dataset, the non-cancerous breast of a given
case was matched with the ipsilateral breast of the control.
The combined dataset consisting of both the cancer side and
non-cancer side datasets is referred to as the expanded dataset
below. The expanded dataset was used for the correlation and
distribution modeling investigations. The study protocol and
informed consent process were approved by the local Insti-
tutional Review Board (IRB). This protocol is reviewed annu-
ally.

Materials and Methods: Imaging System

One General Electric Senographe 2000D FFDM system
was used for this work. This mammography unit is used for
routine breast cancer screening at the Moffitt Center. This
system has a 100 um digital spatial resolution. Craniocaudal
(CC) views were used in this analysis to reduce chest muscle
interference. The system produces both raw data and pro-
cessed data for clinical display use. Raw data was used in the
analyses (not processed data for clinical viewing). The sys-
tem processed images (clinical display images) were used as
raw image surrogates to provide display illustration
examples. For example, FIG. 1 illustrates example images
created by a study FFDM unit used as raw image surrogates
for display purposes only. From left to right, the top row
shows three processed images created by the study FFDM
unit used as raw image surrogates for display purposes only.
The middle row from left to right shows the corresponding
segmented and then eroded breast image areas. The bottom
row shows the corresponding percent glandular (PG) cali-
brated images. As in film mammograms, larger pixel values
imply greater x-ray attenuation and greater breast density. For
the bottom row from left to right, the measured (PG, PG,,)
values for each image were: (14.3, 5.8), (27.5,5.4), and (14.9,
5.1), respectively. The raw image data is not useful for display
purposes without considerable manipulation.
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10
Materials and Methods: Calibrated Breast Density Measures

The PG calibration may be applied automatically at a lower
resolution by averaging over 10x10 pixel regions, for
example, to reduce unwanted variation. The PG and PG,
measures were determined by calculating the average and
standard deviation of the calibrated pixel values within the
breast area (defined below) for each image.

As discussed above, variation measures (i.e., PG,,) used
the standard deviation. In this study, the variation measure
used the standard deviation of calibrated pixel values. How-
ever, as discussed below, the variation measure may use the
standard deviation of the non-calibrated pixel values. In one
implementation, the variation measure may be derived using
the conventional standard deviation calculation:

1

1 q 2
—Z(pvj—m)z} ,
q

J=1

PG, = PGy =

where pv; are the pixel values within the eroded breastarea, m
is the average (or mean) of pv,, and there are q pixels within
the eroded breast region. The expression applies to either
calibrated pv, or non-calibrated pv; and applies to a given
image. Naturally, both q and m vary from image to image (i.e.,
patient to patient). The above equation is an 1* vector norm.
Alternatively or additionally, it may be possible to use the I*
vector norm to calculate variation defined as:

1 9
PG, = —Z|ij—m,
94

using the same definitions discussed above. Preliminary find-
ings from 180 case-control pairs following from the selection
and matching criteria described previously are presented in
FIG. 20. Fractional order or non-integer order moments can
be derived from these expressions by taking the absolute
value of either expression within the summation argument
and raising it to the said order. For example, substituting this
expression |pv,—ml™ in the PG, equation or changing the
numeral “2” in the PG, expression to x in both places, where
X is any real number. Non central moments of any order
follow from setting m=0. PG, is PG, re-labeled. When using
the 1* form, it is not always required to use the absolute value
for each term within the sum before raising the term to a given
power. The absolute value operation depends on making the
argument a valid expression required to raise it to a given
power or the desired outcome. For example, skewness may be
calculated by replacing the inner power 2 with 3 in the 1
expression. The sum can be negative, in which case the sum
would not be raised to the 5 power. There may be other
situations where the term (pv,—m) is negative and raising it to
an arbitrary power of this from (pv,-m)* may not be a valid
expression with the 1% form. In this case, taking the absolute
value of every term in the sum for the given x is required when
building on the 1 norm form, and using the sum or raising the
sum to 1/x power as the measure in all situations.

FIG. 20 shows the odds ratios (ORs) by quartile, the num-
ber of breast cancer cases samples (n) in each quartile for the
PG, breast density measure. The first quartile was used as the
reference (Ref.) for the seconds-fourth quartiles and 95%
confidence intervals (Cls) are provided for each OR paren-
thetically. The area under the receiver operating characteristic
curve (Az) is also provided. The findings are presented unad-
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justed form (left) and adjusted (right) for body mass index
(BMI), breast area (area) and menopausal status. The strength
of'the measure is demonstrated by the associations in the right
column.

FIG. 21 is a table with the combined measure findings.
Further, a variation of pixel values of the plurality of pixels
may include calculating combinations of the measures
defined above. For example, calculating a combination mea-
sure based on results of the ' norm (i.e., PG, ) and the 1> norm
(i.e., PG,) may be accomplished using the Gram-Schmidt
orthogonalization process, Principal component analysis,
partial least squares as well as nonlinear approaches and/or
kernel based methods, but not limited to these combination
method examples.

Referring to FIG. 21, the components of u, represent the
PG, risk factors for each patient. The vectoru, is PG, ,with its
projection along PG, (oru,) removed. The components of u,
are the modified PG, risk factors for each patient with the
PG, influence removed. FIG. 21 gives the odds ratios (ORs)
by quartile and the number of breast cancer cases samples (n)
in each quartile for the Gram-Schmidt analysis. The quartile
findings for PG, while controlling for u, as a continuous
variable are provided. The first quartile was used as the ref-
erence (Ref.) for the second-fourth quartiles and 95% confi-
dence intervals (Cls) are provided for each OR parentheti-
cally. The area under the receiver operating characteristic
curve (Az) is also provided for each measure. The continuous
OR is also provided for u, (bottom row). The model was
adjusted for body mass index (BMI), breast area (area) and
menopausal status. When comparing these findings with
those in FIG. 20, the combination measure provides some
gain in OR associations and in Az.

In addition to obtaining variation measures using the 12
vector norm and the 1' vector norm, it may be possible to
obtain variation measures using other moments, such as the
first central moment (average), the second central moment (or
the square root of variance which is PG,), the third central
moment (skewness), the fourth central moment (kurtosis),
etc, or non-central moments, including moments of all order,
and combinations of all measures. Hybrid measures include
combinations of all of these measures. The order includes all
real numbers.

Related work showed that eroding the breast area produces
an image coincident with where the breast was in contact with
the compression paddle. The breast area was first segmented
from the background automatically by setting all pixels
within the breast area to one (1) and setting all other pixels to
zero (0). A radial coordinate system origin was positioned at
the side of the image (chest wall position—Ieft side in a left
CC view) at the vertical direction (parallel to the chest wall)
centroid position estimated from the segmented binary
image. The breast area was then eroded by 25% of the dis-
tance measured from the radial coordinate system origin to
the breast perimeter along a given radial direction. The breast
area may be eroded by any percentage of the distance mea-
sured from the radial coordinate system origin to the breast
perimeter along a given radial direction, but preferably in a
range between 0 and 35% but not limited to this range. The
calibration requires an accurate spatial assessment of the
compressed breast thickness and therefore does not apply in
the region where the breast is not in contact with the com-
pression paddle because the thickness is unknown in this
region. The erosion operation produces the portion of the
image that approximates the region where the compressed
breast thickness is defined and known. FIG. 1 shows three raw
image surrogates. The corresponding eroded segmented
images are shown in the middle row of FIG. 1. Both the
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average PG and PG,,; measures were calculated from the
region in the calibrated mammograms corresponding to
eroded area. The respective calibrated (eroded) image
examples are shown in the bottom row of FIG. 1.

Materials and Methods: Operator-Assisted Breast Density
Measurements

The standard PD measurements were generated with the
Cumulus3 (CM) software (University of Toronto) using the
batch file procedure operating on the raw (non-processed
images) FFDM images. The dataset consisting of all cases-
control images (left and right CC view images) were first
de-identified and randomized. The CM operator was blinded
to the case-control status and original image identifiers. To
avoid operator fatigue, the PD labeling was performed in
multiple reading sessions (490 images were labeled). Here-
after, we use PD measure to refer to the standard breast
density measurement derived from the CM labeling. This
labeling technique can be considered as the de facto standard.
Materials and Methods: Statistical Analysis

Conditional logistic regression was used to assess the asso-
ciation between the three measures of breast density and the
case-control status. A standard quartile analysis was used for
the odds ratio (OR) comparisons, where the control breast
density distribution was used to determine the cutoft value for
each measure. The first quartile of breast density for each
measure served as the reference group for the second through
fourth quartiles. The quartile analysis also provided a means
for comparing the inter-measure OR distributions. Body mass
index (BMI) measured in kg/m?* and breast area (pixel units)
in the analyses were adjusted for as continuous variables. The
area under the receiver operator characteristic curve (Az)
metric was also used for predictive capability comparisons.
This analysis was performed with the SAS software package
(SAS Institute Inc., Cary, N.C.).

Linear regression analysis was used to investigate the inter-
breast density measurement association and their relationship
with the projected breast area. All relationships were fitted to
the y=mx+b standard form. The full projected breast area
(un-eroded breast area) was used in the analysis. This regres-
sion analysis was stratified by case-control group for com-
parisons of the calibrated measures using the expanded
dataset.

Materials and Methods: Breast Density Statistical Model

To develop a model that explains the relationships between
the three measures of breast density, the empirical probability
distributions (estimates) for the combined case-control glan-
dular and adipose tissue components were constructed and
investigated (expanded dataset). These two components were
used to formulate a mixed distribution that connects the stan-
dard PD, PG and PG, breast density measures. It was shown
previously that a PD-like measure (PD_) of breast density can
be generated from the calibrated PG representation (eroded)
images automatically by first applying a data transform. Let-
ting pg(x, y)=PG(x, y)/100, where PG(x, y) is the calibrated
image pixel value located at the (X, y) spatial coordinates.
Note that the pg(x,y) pixel values are constrained to this range
(0,1). The normalized attenuated x-ray exposure representa-
tion image is then defined as

A(x,y)=k(1.0-exp[-pg(x.y)t]), (6]

where t, is the system compressed breast thickness readout
quantity expressed in cm for each image, and k=5000 is an
arbitrary constant. Using A_=3200 as a static threshold, pixel
values within the eroded breast region meeting this condition
A(x,y)zA_ were counted as glandular pixels (the d,, count),
whereas pixel values meeting this condition A(x,y)<A_ were
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counted as adipose regions (the a,, count). For a given image,
the PD-type measure is given by

PD, ==

C_NXIOO% with N = d,, + ap.

It was shown previously that the PD_ measure association
with breast cancer is similar to that of the PD measure when
analyzing the same dataset. For this work, the PD_ labeled
images were generated as an intermediate step to construct
the component distributions. These binary labeled PD,
images were then used as overlays for their respective PG
representation images. For a given pair of PD,_ and PG
images, regions (pixel values) in the PG image corresponding
to the regions in the PD_image labeled as were assembled into
an array. This process was carried out for every PG and PD_
image pair in the extended dataset resulting in one array
containing all PG pixel values corresponding to the labeling.
The same process was carried out for the a,,, labeled regions
resulting in another array. Normalizing each histogram of
these arrays separately to unity gives an approximation for the
respective ensemble probability distribution for each tissue
type.

These two component distributions were used to formulate
amixed distribution relationship for each mammogram. For a
two component mixture, the mixed distribution for a given
image can be expressed as

@
where p, represents the component distributions (derived
from the two arrays referenced above) with i=1 for the glan-
dular component and i=2 for the adipose component, ¢ is the
two-component mixing proportion, and z=PG (calibrated
pixel values). For a given image, the mean can be expressed as

3

where m, and m, are the respective means determined from
the component distributions. Likewise, the variance for a
given image can be expressed as

PE)=exp(2)+(1=c)xpa(2),

m=cxm +(1-c)xm,,

Z=cx(024m 2 +(1-C)x (05 2+my2)-m?,

Q)

where o, represents the respective standard deviations calcu-
lated from the component distributions, and m was defined in
Eq. (3). Equations (3-4) redefine the PG and PG,, breast
density measures respectively and show the theoretical con-
nection between the three breast density measures. The rela-
tionship with PD follows from Eq. (3). For a given image,
cx100% is an approximation of the PD measure. The mixing
proportion, ¢, theoretically accounts for the fraction of pixels
within the breast area that would be labeled as dense breast
tissue by the standard PD measure. Quantities m,, m,, 0,, 0,
were calculated from the respective component distributions.
These quantities were then used with Egs. (3-4) to estimate
the mixing coefficient breast density measure, c, for each
image using the respective PG and PG|, measures as substi-
tutes for m and o. A brief analysis of the PD,_ and the mixing
coefficient measures of breast density was provided to dem-
onstrate the validity of (a) the methods used to generate the
component distributions, and (b) the Eq. (4) approximation.
Results
Results: Breast Density Measurement Comparisons
Demographic and risk factor distributions are provided for
the breast cancer cases and controls in the shown in FIG. 2.
Referring to FIG. 2, the number (n) of patients and percent-
ages are provided for the breast cancer cases and controls
stratified by hormone replacement therapy (HRT) usage and
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duration by years (yrs) of usage. The parenthetical entries cite
current HRT users as defined in Study Population section
above. The mean body mass index (BMI), age, and breast area
are given for each group. The associated standard deviations
(SDs) for the BMI, age, and breast area distributions are also
provided.

Associations between the three breast density measure-
ments (PD, PG, and PG) and breast cancer are summarized
in FIG. 3 (left-side) for the cancer side dataset. Specifically,
FIG. 3 shows the association with breast cancer for the per-
centage of breast density (PD), the average calibrated (PG),
and the calibrated standard deviation (PG,,) measures of
breast density. The odds ratios (OR), OR confidence intervals
(CI), and area under the receiver operator characteristic curve
(Az) values are also shown. The findings for the cancer-sided
(left column) and non-cancer side (right column) are shown
separately. One case image and one unrelated control image
were not usable; therefore two case-control pairs were dis-
carded. All measures were either adjusted for body mass
index (BMI) measured in kg/m* and for BMI and area (pixel
units), simultaneously. In FIG. 3, the OR associations and Az
quantities were adjusted for BMI and the simultaneous
adjustments for both BMI and breast area (i.e., the mammo-
gram-based two-dimensional measure of breast size). For all
three measures, the ORs and Az quantities increased (in-
creased magnitude of association) when controlling for area.
Both the PD and PG,, measures showed significant magni-
tude of association with breast cancer for all non-referent
quartiles (i.e., theleft side OR confidence intervals are greater
than unity). In contrast, the confidence intervals for the PG
measure included unity for most quartiles. The PG, ; measure
showed greater magnitude of association with breast cancer
when comparing its quartile ORs with the other measures,
and the PD measure showed greater association than the PG
measure. The PG, and PD measures produced similar Az
values that were larger than that produced by the PG measure.

FIG. 9 shows the variation measure estimated from the raw
mammograms. Specifically, FIG. 9 is a table of breast density
measurements in association with breast cancer using raw
mammograms without calibration from the first example
study. FIG. 9 shows the cancer-side 123/123 case/control
findings for the raw data. The measurement is the standard
deviation of the pixel values within the eroded breast region.
All measures were either adjusted for body mass index (BMI)
measured in kg/m?, for BMI and area (pixel units), for BMI,
area and t, and for BMI, area, and mAs. Although the odds
ratios are a bit lower than those calculated from the calibrated
mammograms, they were derived from raw images with
much less effort. The calibration requires a significant infra-
structure support with phantom imaging and extensive analy-
sis. In contrast, the raw image analysis requires little effort. In
any event, the analysis (calibrated image or not), does not
require user input (no operator dependent thresholds). The Az
is slightly greater than the corresponding cancer side PG,
findings, whereas the ORs show greater magnitude of asso-
ciation for the non-referent quartiles for the PG,,; measure
(the calibrated measure). Thus, FIG. 9 shows that the non-
calibrated measures may also be a strong measure of risk.

To assess whether the presence of breast abnormalities in
the cancer side breast was responsible for the positive asso-
ciations between breast cancer and the PG,, measure, the
associations were investigated using the non-cancer side
dataset. For comparison purposes, the non-cancer side analy-
sis was performed for the PD measure for internal control
comparisons. The findings are shown in FIG. 3 (right-side).
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The OR associations and Az values decreased for both mea-
sures in comparison with the cancer-side dataset, but the
inter-measure relationships remained similar.

Because the breast area for the cancer cases was larger than
that of the controls (FIG. 2), a sub-group analysis was per-
formed by ordering the cancer-side case samples by ascend-
ing breast area. Starting with the case-sample with the largest
breast area, each case and associated control were removed
from the 123 pairs one pair at a time until the case and control
group breast areas were statistically similar. A paired t-test
was used to compare the remaining case-control pair breast
areas after discarding a given pair. When the set was reduced
to between 100-110 matched pairs, the t-test began to lose
significance. The choice of 100 matched pairs (P=0.87) was
arbitrary (104 case/control pairs would work as well). When
these case-control pairs (n=23) were excluded from the
analysis, similar results were observed (data not shown).
Results: Correlation Comparisons

The (PG, PG,,) regression plot for the cancer cases is
shown in FIG. 4. Referring to FIG. 4, the percent glandular
(PG) and PG standard deviation (PG, ;) ordered pairs and
fitted lines (solid) are shown for the case samples of FIG. 5.
The regression analysis was split into two parts for above (x)
and below (+) the case PG distribution mean. Because of the
apparent nonlinear trend, the analysis was divided into (PG,
PG,,) pairs that were either (a) equal to, or above, the case PG
distribution mean, or (b) below this mean. A similar analysis
was performed for the control (PG, PG,,) pairs using the
control PG measure distribution mean as the breakpoint. The
regression plot for the controls is not shown due to close
similarities with FIG. 4. The regression analysis is summa-
rized in FIG. 5. Referring to FIG. 5, the two-part regression
analysis summary fit to the form y=mx+b. The x-y pairs are
shown in the first column. PG is the calibrated average mea-
sure, PG, is the PG standard deviation measure, and area is
the projected (not eroded) breast area. The distribution mean
value of x was used as the breakpoint for each pair. The linear
correlation coefficient (R) is shown for each line segment and
the combination (Comb) correlation is cited in the last col-
umn, derived without the breakpoint. The PG distribution
mean and standard deviation (mean, SD) for the cases and
controls were: (19.8, 13.9) and (18.5, 13.7), respectively. The
breast area summaries are provided in FIG. 2. Comparisons of
the regression parameters and linear correlation coefficients
indicate the cases and controls exhibit similar behavior. The
overall correlation without considering the break also showed
that the cases and controls behave similarly (last column of
FIG. 5). The correlation between the PD and PG measures
was R=0.76, and the correlation between PD and PG, , mea-
sures was R=0.78, as determined with the extended dataset
(not shown).

The correlation between the breast density measurements
and breast area was investigated. FIG. 6 shows the (area, PG)
regression plot for the cancer cases. Referring to FIG. 6, the
graph shows breast area (area) expressed in 10° pixel units
and percent glandular measure (PG) ordered pairs and fitted
lines (solid) for the case samples of FIG. 5. The regression
analysis was split into two parts for above (x) and below
(diamond) the case breast area distribution mean. This analy-
sis was also divided into (area, PG) pairs using the same
format as above that were (a) either equal to, or above, the
case breast area distribution mean, or (b) below this mean
(Table 1). FIG. 7 shows the (area, PG, ;) regression plot using
the same mean area break point. Referring to FIG. 7, the graph
shows the breast area (area) expressed in 10° pixel units and
the percent glandular standard deviation measure (PG,,)
ordered pairs and fitted lines (solid) for the case samples
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(Table 3). The regression analysis was split into two parts for
above (x) and below (diamond) the case breast area distribu-
tion mean. The two measures show similar correlation with
area. A similar analysis was performed for the control PG and
PG, measures with breast area using the control area distri-
bution mean as the break point (not shown). The breast den-
sity measurement and breast area regression analysis findings
are summarized in FIG. 5. The correlations and relationships
were stronger and more similar across case-control group for
the below mean-area groups. Using the extended dataset with
no break point, the (area, PD) correlation was R=-0.39. The
degree of the negative correlation between the breast density
measures and breast area suggests that area should be con-
trolled in the association analysis as shown in FIG. 3.
Results: Statistical Model Evaluation

To explain the correlation and relationships between three
breast density measures, the empirical distributions were
derived from the expanded dataset for the adipose and glan-
dular tissue types, which are shown in FIG. 8. Referring to
FIG. 8, the graph shows the adipose (dash) and fibro-glandu-
lar (dot) empirical ensemble probability distribution function
approximations derived from the expanded dataset. These are
the component distributions used for the mixed distribution
model. These represent a summary of the entire dataset and
they show that the total collection of PG representation
images can be decomposed into two single-mode distribu-
tions. These were constructed by first generating the PD,_
labeled images. For the PD_ measure, Az=0.69 (for the can-
cer-side dataset adjusted for BMI and breast area), which
indicates the validity of the method used to form these com-
ponent distributions (FIG. 8). These distributions were used
to evaluate the Eq. (4) expression relating the three breast
density measures by estimating their (the distributions)
respective means and standard deviations giving: (m;, m,)=
(32.3,9.7)and (o,, 0,)=(14.6, 4.9). The mixture coefficient ¢
[see Eq. (3) and Eq. (4)] was derived from each image as the
breast density measure (approximation for PD) to assess the
Eq. (4) approximation. The ¢ measure quartile associations
with breast cancer (cancer side dataset) and Az were similar to
that of PD (FIG. 3) when adjusting for breast area and BMI
[odds ratios: 1.0 (ref.), 2.6, 3.5, and 5.5, and Az=0.67].
Although Eq. (4) shows the connection between the various
measures, understanding the positive correlation between m
and o, theoretically, requires manipulation. ¢, (simulated ¢
variable) was generated over this range (0,1), Eqs. (3-4) were
generated as functions of ¢, using the density quantities (m,,
m,, 0,, 0,), and it was found that the theoretical linear cor-
relation between PG and PG, [i.e., correlation between Eq.
(3) and square root of Eq. (4)], which gave R,=0.79. This
theoretical correlation is in agreement with the measured
correlation between the PG and PG,, shown in FIG. 5 (last
column). As Eq. (4) shows, PG, is a positive valued function
of increasing ¢ but it is not monotonic.
Discussion

The analysis resulted in three important findings. First, the
PG, measure showed greater magnitude of association with
breast cancer than the other measures in a side-by-side com-
parison. In contrast, the calibrated PG measure was the least
associated breast density measure, which agrees with other
calibration investigations. Secondly, the work provides evi-
dence for the correlation between the measures. Connecting
the image variation (PG, measure) with the normalized PG
representation, PG measure, and the PD measure with the
mixed distribution relationship is an important contribution to
breast density research. This relationship shows that the three
measures are characterizing different attributes of the same
phenomenon and helps to explain the positive correlation
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between the measures. Previous work showed that the cali-
brated PG measure can be used to explain the information
captured by the PD measure. These earlier findings were
reinforced by the mixed distribution formulism. There is also
another condition that may contribute to the positive correla-
tion. Although most likely non-parametric, these distribu-
tions (FIG. 8) individually exhibit skewed right tail behavior
similar to that of Poisson, low-order central Chi-square, and
more generally lower order gamma probability density func-
tions for example. In these non-symmetric parametric densi-
ties, the mean and standard deviations are functions of the
same parameters, implying they are related (often termed
signal dependent noise). By hypothesis, the findings suggest
that PD is an approximation for the PG, measure. Thirdly,
the work showed that breast area may be a confounding factor
for both calibrated measurements as well as for the PD mea-
sure.

The PG, ,; measure magnitude of association is consistent
with previous work that found low frequency Fourier features
show association with breast cancer similar to that of PD.
Because the mammograms have approximately a 1/ power
spectrum, the majority of the image pixel intensity variation is
captured in the lower frequency portion of its Fourier power
spectrum. Although the power spectrum of the calibrated
FFDM images used in this report were not investigated here,
the previous spectral analysis of similarly acquired FFDM
images holds in general for these calibrated images. For a
given target/filter calibration and fixed x-ray tube voltage, the
calibration mapping is linear; this linear mapping preserves
the spectral functional form within a constant and scaling
factor. Thus for a given calibrated image, the measured PG,
quantity is heavily influenced by the low frequency portion of
its power spectrum. This relationship is also consistent with
(and applies to) the standard deviation measure estimated
from the raw data.

Both the choice of dataset and breast area influenced the
findings. Previous work showed that choosing the cancer-side
or non-cancer side breast was of little consequence in the
association analyses for the PD measure. At this time, it is not
clear if this relation holds for the PG, , measure. It was found
that the PG, measure is more predictive in the cancer-side
dataset in comparison with non-cancer-side dataset. How-
ever, the same relationship held for the PD measurements as
well. Previous work showed that the left breast has a tendency
to be larger than the right breast and this asymmetry is exag-
gerated in women with breast cancer, but these asymmetries
do not explain the differences noted here in the case-control
breast areas. The mammography type-unit used for this work
was the first FDA approved FFDM unit in the US. This system
has a smaller detector than newer FFDM systems and has a
problem accommodating larger breasts in a single acquisi-
tion. In multiple-mammography unit facilities that have
mixed detector sizes, x-ray technicians (as ascertained from
technicians at this center) direct women with larger breasts
(by observation) to units with larger detectors. All of the
control image samples were derived from images acquired
with this selection process for this FFDM unit under normal
screening conditions. In contrast, a portion of our cancer
cases was recruited and imaged without regard to this selec-
tion process indicating that their projected breast areas may
be greater than those of the controls. The breast area distri-
bution summaries (FIG. 2) show this holds. The findings for
the reduced dataset indicated that this bias has negligible
influences when controlled for it in the full dataset analysis.
The findings indicate that controlling for breast area is as
important as controlling for BMI when investigating mea-
sures of breast density. Evidence also indicates larger breasts
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tend to have less breast density as reviewed by these research-
ers, which agrees with the overall negative breast density
measurement correlation with breast area relation found here.

At this time, both forms of the variation measure (standard
deviation) appear to viable breast density measures. Both
forms are automated. The raw image measure does not
require the development of a calibration platform, represent-
ing considerable research effort reduction. The measure
derived from the calibrated images has the benefit of being
strictly defined with a specific data representation. For
example, the mixed distribution formulism was only possible
via the calibration application.
Second Example Study—Comparison of Calibrated and
Non-Calibrated Measurements
Methods
Methods: Study Population

The patient accrual was part of an ongoing case-control
study. The study population, selection methods, and matching
particulars have been discussed previously and are not dis-
cussed here in detail. In brief, the study accrual has been
updated in this example study to include more participants. In
this IRB approved study, women diagnosed with a primary
breast cancer (September 2007-March 2011) were included
as cases (n=160) identified from those attending the breast
clinics at the H. Lee Moffitt Cancer Center. For the controls,
three groups of cases were considered based on their screen-
ing history. Group 1 was comprised of women that had a
negative screening mammogram within 30 months prior to
their breast cancer diagnosis (n1=141). Group 2 was com-
prised of women who had a negative screening history that
fell outside of the group 1 parameters, such as a woman who
had a screening in 2007 but not again until 2010 at which time
she was diagnosed with cancer (n2=14). Group 3 was com-
prised of women who were just starting screening and were
diagnosed at their baseline mammogram (n3=5). Case data
and images were either located by retrospective records
review (n=52) for those women with images archived on the
study FFD,, unit or recruited, consented, and imaged for the
stuy (n=108). Controls (n=160) were identified retrospec-
tively from the pool of women undergoing breast cancer
screening mammography at the H. Lee Moffitt Cancer Center
with archived images acquired with the study FFDM unit and
were matched (individual) to their cases by age (+2 years) and
hormone replacement therapy usage and duration (+1 year).
Methods: Spatial Variation Breast Density

Various breast density measures and their association with
breast cancer were compared using a matched case-control
design. To reduce anomalous spatial variation, the analysis
was contained to the portion of the image that was in contact
with the compression paddle during imaging. For example, as
discussed above with reference to the first example study, the
breast image area was eroded by 25% along a radial direction.
This area defined the effective breast areca. The degree of
breast area reduction is an approximation that eliminates
anomalous region where the compressed breast thickness is
not well defined. Both PG, and the standard deviation cal-
culated from the raw data (or Rg;,) were derived from this
modified breast area. The measures R, and raw image
standard deviation from the fixed box (Rg,y) were derived
from reducing the effective breast area further and calculating
the standard deviation. The raw image standard deviation
from the reduced breast area (R, ) was derived with 35%
erosion. Because mammograms have a fractal characteristic,
R,y Was considered by restricting the measure to a 3x3 cm?
box within each image. The box was located by first segment-
ing the breast region from the background and forming a
binary mask, where the breast region pixels were setto one (1)
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and the other pixels were set to zero (0). Parallel to the chest
wall, the box was centered on the centroid (determined with
the binary segmented image) and extended from the detector
edge to 3 cm along the direction perpendicular to the chest.
Examples of the box location-size are shown in FIG. 10,
which illustrates additional example images created by a
study FFDM unit used as raw image surrogates for display
purposes only. Referring to FIG. 10, from left to right, the
image with the largest box area/breast area ratio, the image
with the medium ratio, and the image with the smallest ratio
(right) are shown. The image areas from left to right in pixel
units are 2,426,894, 1,324,519 and 386,023. The outlined box
is 3x3 cm? (300x300 pixels) and is vertically centered on the
segmented image vertical centroid coordinate. The raw image
standard deviation from the fixed box (Rgny) breast density
was derived from this region. These images are processed
clinical display images. This measure was used to investigate
(or control for) two possible influences. First, in fractal noise
fields such as mammograms, the variance is a function of the
region-size from which it is measured, where the larger the
area, the larger the variance. Second, PG, is a decreasing
function of increasing breast area. All measures of breast
density were compared with PD as means of standardized
control.

Methods: Percentage of Breast Density (PD)

The dataset consisting of all cases-control images (left and
right CC view images) were first de-identified and random-
ized. PD was generated with the Cumulus3 (CM) software
(University of Toronto) using the batch file procedure to
process the raw (non-processed images) FFDM images. The
CM operator was blinded to the case-control status and origi-
nal image identifiers. To avoid operator fatigue, a single
operator performed the PD labeling in multiple reading ses-
sions.

Methods: Breast Cancer Association Comparisons

To assess the breast density measure association with
breast cancer, the non-cancer breast of each case was matched
with the ipsilateral breast of its control. All mammograms
were performed with a General Electric (Milwaukee, Wis.)
Senographe 2000D FFDM mammography unit (i.e., one unit)
that is used for routine screening at our center. The Cranio-
caudal (CC) views were used for all our analyses. A standard
quartile analysis with conditional logistic regression was
used for the odds ratio (OR) comparisons, where the control
breast density distribution was used to determine the cutoff
values for each measure. The first quartile of breast density
for each measure served as the reference group for the second
to fourth quartiles, providing a means for comparing the
intermeasure OR distributions. Body mass index (BMI) mea-
sured in kg/m® and breast area (pixel units) were used as
continuous variable adjustments in the analyses, whereas
menopausal status was adjusted as a binary variable. The area
under the receiver operating characteristic curve (or Az) was
also used for predictive capability comparisons. This analysis
(including the Az estimations) was performed with the SAS
software package (SAS Institute Inc., Cary, N.C.).

Methods: Calibration Assessment

An objective of this work was to investigate the nature of
the calibration without considering the case-control status as
the end point comparison. Similar pixel distribution measures
were derived from calibrated and non-calibrated mammo-
grams and compared. The average (or PG) and standard
deviation of the calibrated pixels values (i.e., PGg,) were
used as the two calibrated measures. The mean (R,,) and
standard deviation (i.e., Rgy,) of the raw pixel values were
used as two non-calibrated measures. The respective means
and standard deviations were investigated with linear regres-

10

15

20

25

30

35

40

45

50

55

60

65

20

sion analysis. For this analysis, we used the combined image
dataset (i.e., 320 study images derived from both cases and
controls).

Results

Results: Breast Density Measurement Association

Demographic and risk factor distributions are presented for
both breast cancer cases and controls in FIG. 11. Referring to
FIG. 11, the table provides the number (n) of cases and
controls in the hormone replacement therapy (HRT) stratifi-
cations by years and for the other measures. The mean and
standard deviation (SD) for the age, body mass index (BMI),
breast area distributions, and menopausal status (postmeno-
pausal or not) breakdown by case-control group are also
provided. Note, BMI was missing for one case observation.
However, the cases have a few more menopausal women and
the majority of women overall all postmenopausal.

Associations between the five breast density measure-
ments and breast cancer are summarized in FIG. 12. Refer-
ring to FIG. 12, the quartile odds ratio (OR ) stratifications and
area under the receiver operating characteristic curve (Az)
quantities for each of the five breast density measures: 1)
operator-assisted percentage of breast density (PD), 2) cali-
brated standard deviation (PGg), 3) raw image standard
deviation (R,,), 4) raw image standard deviation from the
reduced breast area (Rsp; ), and 5) raw image standard devia-
tion from the fixed box (Rg,y) are shown. The number of
cases in each stratification (n1-n4) is listed in the top row.
95% confidence intervals (Cls) are provided parenthetically
next to each OR. Inthe analysis, body mass (BMI), breast area
(area), and menopausal status were controlled. The two
groups are similar in most measures. In FIG. 12, the ORs and
Az quantities were adjusted for BMI, simultaneous adjust-
ments for BMI and breast area, and the simultaneous adjust-
ments for all three factors. When controlling for all factors,
PG, provided the largest OR associations with breast cancer
(OR: 1.0 [ref.], 4.6,4.3,7.4; Az=0.651) among the measures.
In comparison, the PD associations (OR: 1.0 [ref.], 2.7, 2.9,
5.2; Az=0.643) were somewhat diminished. The R, asso-
ciations (OR: 1.0 [ref.], 2.9, 4.4, 5.4; Az=0.654) were slightly
greater than PD, and the R, associations (OR: 1.0 [ref],
3.5, 3.1, 4.9; Az=0.650) were similar to PD. In comparison
with the other measures, R, provided the weakest associa-
tion (OR: 1.0 [ref.], 2.2, 2.9, 3.8; Az=0.634). The estimated
standard error (SE) for all Az quantities was SE ,_~0.03 indi-
cating the inter-measure Az differences are marginal for most
comparisons. To help explain the R, and R, relative asso-
ciation, the calibrated standard deviation calculated from the
35% eroded breast region (or PGg,;) was investigated. In
contrast, the PGg,,; associations weakened when using the
reduced breast area but were similar to that of PD (data not
shown).

To estimate the area loss resulting from the erosion pro-
cess, a coarse approximation that applies to CC views was
used. Assuming the breast area (A) geometry is a half-hemi-
sphere, A~r*, where r is the radius, the differential area
change approximation with respect to the erosion is given by
dA~2RxAR, with AR=0.25xR or 0.35xR for the 25% and
35% erosion, respectively. The percentage area reduction is
then ~100%xdA/A, which gives 50% and 70%, for the 25%
and 35% erosion. Thus, the R,,; measure included roughly
30% of the available pixels within the breast region, whereas
R, included 50% of the pixels. To put the R ¢, - measurement
in context, the box relative to various breast sizes is shown in
FIG.10. From left to right, the box relative to the larger breast,
medium size breast, and smallest breast in the dataset are
shown in FIG. 10. The breast area histogram is shown in FIG.
13. Referring to FIG. 13, the frequency histogram for the
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breast area measured in 10° pixel units (i.e., the bin-width
used for the horizontal axis). The symmetric behavior indi-
cates most images are similar to the middle image in FIG. 10.
The symmetric behavior (and central tendency) shown in
FIG. 13 indicates that many of the images have breast areas
similar to the medium size breast shown in FIG. 10 (middle
illustration). For all measures, the ORs and Az quantities
increased (increased magnitude of association) when control-
ling for (a) BMI, (b) BMI and breast area, and (c) BMI, breast
area, and menopausal status. However, the four variation
measures were more strongly influenced by the breast area
than PD when considering the respective ORs. The ORs for
the box-restricted measure were also influenced by breast
area. These findings also indicate that menopausal status is
captured by the breast density measures to varying degrees.
For example, we let x,=the 4th quartile OR without control-
ling for menopausal status and x,=4th quartile OR when
controlling for menopausal status for a given measure. The
percent change (PC) is then given by PC=(x,-x,)/x,x100%.
For the calibrated PGy, PC=20.2%, and for the Ry,
PC=8.7%. In contrast, for PD, PC=1.4% and for R,
PC=2.7%. Because the calibrated measure was influenced the
most by menopausal status, its relationship is further
assessed. PG, was used to predict premenopausal status
with logistic regression, which gave OR=1.9 (1.5-2.5) per
standard deviation change in PG, and Az=0.690.
Results: Correlation Comparisons To show the influence that
the calibration has on the raw image mean (or R, ), the cali-
brated mean (or PG) was modeled as a linear function of R,
(FIG. 14). Referring to FIG. 14, the calibrated mean values
modeled as a linear function of the raw image mean values
(dashes) are shown. The regression-fitted lines (solid) show
the two measures are not described well by this relationship,
indicating the calibration has a strong influence. The data
were modeled with all the points (line with the longer length)
and with three outliers removed (line with the shorter length)
from the right. The respective slope (m) and standard errors
for each plot were m=0.026+0.004 and 0.047+0.005 with
r*=0.12 and 0.19. In this plot, the entire dataset (the line with
greater length) and a restricted dataset determined by remov-
ing three outliers located to the right (the line with shorter
length) were used. The respective slopes for each line were
m=0.026 (SE=0.004) and 0.047 (SE=0.005). In both cases,
the slopes were significantly different from zero (P<0.0001).
However, the respective coefficients of determination were
R?=0.12 and 0.19, indicating the linear model does not
explain the relationships well. Referring to FIG. 15, the cali-
brated standard deviation modeled as a linear function of the
raw image standard deviation (dashes) is shown. The slope
and standard error were m=0.042+0.002. The regression fit-
ted line (solid) shows the two measures are highly correlated
(R?=0.73) indicating that the calibration re-scales the stan-
dard deviation quantities while approximately maintains the
internal distances between the samples. As shown in FIG. 15,
PGy, (calibrated standard deviation) was modeled as a linear
function of Ry, (the raw image standard deviation), which
gave m=0.042 (SE=0.002 and P<0.0001) with R*=0.73.
Because of the R, significant OR associations, a similar
regression was performed with PG, which gave m=0.048
(SE=0.001, P<0.0001) and R*=0.77 (plot not shown). Thus,
the standard deviation measures derived from the two differ-
ent data representations are collinear.
Discussion

The second example study investigated various automated
methods of measuring breast density and made comparisons
with PD. All measures of breast density showed a significant
association with breast cancer to varying degrees. Among the
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measures, PG, showed the strongest OR associations with
breast cancer, indicating calibration produced information
not retrievable or available from the raw data representation.
Furthermore, the relationship between PG and R,, was not
described well by a linear model. In contrast, the linear model
reasonably explained the relationship between the PG, and
R, measures. This provided supporting evidence for the
significant association produced by the raw image breast
density measures. These findings suggest that much of the
data within the breast area confound the standard deviation
measures from the raw data. R;,; was based on the analysis
of'roughly 30% of the breast area, whereas producing signifi-
cant associations. Eliminating a significant portion of the
breast region improved the raw image standard deviation
associations, whereas further erosion diminished the PG,
associations. The R ¢, findings are more difficult to interpret.
This measure produced significant association while consid-
ering a relatively small section of the image in many situa-
tions. Moreover, the OR relationships were influenced by
controlling for breast area. Possible reasons for the elevated
associations may be that this box region is likely to include
the focal spot and the distance between the compression
paddle and detector is relatively more uniform in comparison
with larger regions. The second example study also showed
that standard deviation measures were more heavily influ-
enced by both menopausal status and breast area in compari-
son with PD. The relationships with menopausal status,
breast area, and the new breast density measures will require
further analyses to fully understand the underlying mecha-
nisms.

Conclusions

The calibrated measure provided the strongest OR associa-
tions among the measures considered. The standard deviation
measures from the raw mammograms also provided signifi-
cant associations with similar predictive capability as the
calibrated measure (i.e., the Az findings). Both the calibrated
and non-calibrated variation measures are automated. The
gains from calibration result from considerable phantom
imaging and data analyses, which are required to maintain
calibration accuracy. In contrast, R, results from a rela-
tively simple algorithm.

Both standardization and automation of breast density
reporting would assist the radiologist in providing a further
measure of risk to the referring clinician and provide a means
for developing personalized screening frequency strategies.
Realization of this potential is based on an algorithm to accu-
rately and reliably quantify breast density independent of a
subjective reader and in a manner that does not disrupt clinic
throughput or patient management. These new measures may
provide automated solutions for the measurement of breast
density after undergoing rigorous evaluations with different
datasets.

Third Example Study—Automated Mammographic Density
Methods
Methods: Study Population

Data from three studies at the Mayo Clinic were used in this
research effort and are described below. All three studies were
approved by the Mayo Clinic Institutional Review Board.
Mayo Mammography Health Study (MMHS) is an ongoing
cohort study of female residents of Minnesota, Wisconsin and
Iowa over the age of 35, having screening mammography at
the Mayo Clinic between 2003 and 2006, and with no per-
sonal history of breast cancer. Participants completed a ques-
tionnaire, provided consent to mammograms, medical record
and linkage to state cancer registries. The 19,924 participants
(response rate, 51%) are followed for incident cancer events
through the tri-state cancer and Mayo Clinic tumor registries.
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The current analysis is based on follow-up through Decem-
ber, 2008 and includes 231 incident and histologically con-
firmed primary breast cancers; fifty nine cases diagnosed
within 60 days of the enrollment mammogram were
excluded. A case-cohort design was used to efficiently target
mammogram collection efforts to a random sample or sub-
cohort 0f 2300 women from the entire MMHS cohort as well
as all incident breast cancers. Excluding women with digital
mammography, a total 0f217 cases and 2094 subcohort mem-
bers were available for analyses.

Mayo Clinic Breast Cancer Study (MCBCS) is an on-
going clinic-based breast cancer case-control study initiated
in February 2001 at Mayo Clinic, Rochester, Minn.,
described previously. Cases are recruited within six months
of date of diagnosis from a six state Midwestern region.
Controls without prior history of cancer are recruited from the
internal medicine practices at Mayo Clinic and frequency
matched to cases on age (5-year age category), race and state
of residence. Analyses are based on 1870 cases and 1628
controls enrolled through October, 2008 with 69% case and
71% control participation. Mammograms were available and
digitized for 940 (50%) cases and 1087 (65%) controls.

Mayo Clinic Mammography Study (MCMAM) is a
matched breast cancer case-control study nested within the
mammography screening practice in Rochester, Minn. Cases
(n=373) and controls (n=713) were 50 years or older, lived
within a 120 mile radius of Rochester, and required to have at
least two screening mammograms prior to diagnosis (cases)
or referent date (controls). Controls without breast cancer
were matched to each case on age (within 5 years), screening
exam date (4 months), menopausal status, interval between
mammograms (8 months), prior screening mammograms (1
mammogram) and residence (county). Based on the need to
digitize films at a higher resolution, mammograms were only
available on 246 cases and 522 controls.

Mammogram Retrieval, Digitization and Percent Density
Estimation

The earliest available mammogram before diagnosis (or
enrollment date) was used for primary analyses. For MMHS
and MCMAM, there were 4.7 years and 3.7 years on average
between mammogram and diagnosis (or enrollment) date.
This interval was shorter (22 days) in MCBCS, since the
majority of cases only had films available at date of diagnosis.
Mammograms of the contralateral (for cases) or left (for
controls) breast were digitized. For secondary analyses that
evaluated the influence of acquisition parameters on the PD
and V associations with breast cancer, the enrollment mam-
mograms in the MMHS case-cohort were used, since the
earlier mammograms above did not have this information
readily printed on the image. All mammograms from MMHS
and the majority from MCBCS (80%) were digitized on the
Array 2905 laser digitizer (Array Corporation, Netherlands)
that has 50 micrometer (limiting) pixel spacing with 12-bit
grayscale bit depth. Mammograms from the MCMAM study
and 20% of MCBCS were digitized on a Kodak Lumiscan 85
scanner at that has 50 micron (limiting) resolution with 12-bit
grayscale depth (Eastman Kodak Co, Rochester, N.Y.,
USA)).

Percent Mammographic Density (PD) Measure

PD was estimated from the Craniocaudal (CC) mammo-
gram view in all three studies by the same expert reader. PD
(dense area divided by total areax100%) was estimated for
each view using a computer-assisted thresholding program,
i.e., Cumulus discussed above. Briefly, two thresholds are set;
one separates the breast from the background and the second
separates dense from non-dense tissue. For these studies, high
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reliability was demonstrated (r(correlation)>0.93 for all
studies) while reading over 1500 duplicate images across
varying time frames.

Percent Glandular Standard Deviation Measure

TheV algorithm is comprised of two steps. First, the breast
area is segmented from the background automatically to
remove image artifacts and detect the breast area, as discussed
above. This produces a binary mask image that is used as an
overlay for the corresponding original image to constrain the
processing to a specific region. The marked breast area is used
in the second step. This binary half-moon silhouette image is
then eroded by 25%, for example, as described previously.
However, as discussed above, the percentage of erosion is not
limited to 25%, and may be in the range of 0-35%, or any
other percentage range. This leaves the region where the
compressed breast thickness is approximated as uniform and
removes those that could potentially interfere with the mea-
sure. The V measure is the standard deviation of the pixel
values within the eroded breast region for each study image.
All mammograms were processed with the same algorithm.
Acquisition Parameters

To evaluate the potential influence of the image acquisition
technique on the V and PD-breast cancer associations, the
values for the compressed breast thickness, compression
force, x-ray tube voltage, and beam current-time as a surro-
gate for the x-ray generation, were abstracted from mammo-
grams digitized at enrollment from the MMHS case-cohort.
Statistical Methods

Data were summarized for each study by case and control
(or subcohort) status. Associations between the V measure
and PD were visualized using scatter plots and Spearman
correlation coefficients, with 95% confidence intervals (Cls),
summarized the strength of the linear association between the
two measures. Ordinal tests of trend were performed to assess
the association between each density measure and breast
cancer risk. The magnitude of the associations were estimated
using odds ratios (ORs) or hazards ratios (HRs) reflecting the
relative risk of breast cancer for a woman whose measure-
ment was one standard deviation higher than that of another
woman or for quartiles of V or PD. For the case-cohort study
(MMHS), HRs were estimated using Cox proportional haz-
ards regression using sampling weights to account for the
subsampling that was performed in this case-cohort design.
For the case-control studies (MCBCS and MCMAM), ORs
were estimated using logistic regression.

A meta analysis was also performed using a random study
effect to obtain across-study pooled estimates. To combine
the study-specific estimates, ORs from the case-control stud-
ies were transformed to approximate relative risks. The delta
method was applied to obtain approximate standard errors of
these log-transformed relative risks.

To compare the ability of the two measures to identify
women at greatest risk of breast cancer, the area under the
receiver operator characteristic curve (AUC), or concordance
statistic, was estimated. This statistic can be estimated as the
proportion of case-control pairs where the risk factor predicts
the case to have a higher risk than the control. Values of 0.5
suggest that the risk factor(s) cannot discriminate between
cases and controls, and values of 1.0 suggest that the model
provides perfect discrimination.

Tests of association between density measures and breast
cancer while adjusting for image acquisition were performed.
In order to determine the effect of acquisition parameters on
the observed associations, the degree to which the relative
risk and AUC estimates were affected by their inclusion as
covariates were examined.
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All analyses controlled for age at mammogram, BMI and
menopausal status. Tests of significance were two-sided and
analyses were performed using SAS statistical software (SAS
Institute Inc., Cary, N.C.).

Results

Participant characteristics are summarized in FIG. 16 by
study population. The MCMAM study was mostly postmeno-
pausal (91%), and had the highest average age (64.9 years for
cases and 64.1 years for controls) while the MMHS study had
the largest number of premenopausal cases and controls (43-
54%), reflected in the youngest mean ages (55.4 and 51.6
years, respectively). BMI was comparable across all popula-
tions. Average percent density and V were higher in cases
compared to controls.

FIGS. 19A and 19B illustrate that the V and PD density
measures are moderately correlated, with an R*=0.64 for all
studies combined (R? ranges from 0.64-0.66 for individual
studies). This association is linear only at low to moderate
percent densities (<40%). The associations between both
density measures with BMI, age, and menopausal status are
shown in FIG. 16. Both V and PD were highest in premeno-
pausal, younger women and those with low BMI.

All three studies reveal positive associations between the V
measure and breast cancer (FIG. 17). Within the 217 cases
and 2094 subcohort of MMHS, V was associated with breast
cancer [HR for increasing quartiles: 1.0 (ref.), 0.9, 2.1, 7.0,
p-trend<0.001]. The corresponding findings for PD were
attenuated in the top two quartiles, by comparison [HRs: 1.0
(ref.), 1.5, 1.6, and 3.1, p-trend<0.001]. Positive associations
between V and breast cancer were also seen in the 928 cases
and 1039 controls from MCBCS [OR: 1.0 (ref.). 1.3, 3.0,
10.7, p-trend<0.001], with slightly higher estimates in the top
quartiles compared to PD [ORs: 1.0 (ref.), 1.6, 2.0, and 4.4,
p-trend<0.001]. Importantly, these two studies show greater
discriminatory accuracy for the V-breast cancer (AUC=0.71
and 0.76) compared to PD-breast cancer (AUC=0.64 and
0.65) association. The MCMAM study of 246 cases and 515
controls showed similar associations and AUC (0.60 vs. 0.61)
for both V and PD (FIG. 17).

The meta-analysis of the three studies showed positive
associations of breast cancer with both V (RR=1.0, 1.3, 1.9,
3.5) and PD (RR=1.00, 1.3, 1.5, 2.2).

The third example study was interested in whether the
V-association remained when examining mammograms at
least 2 years prior to the cancer, since this would be important
for eventual risk prediction. Only the MMHS and MCMAM
studies were used for these analyses due to the timing of
mammogram films. In both studies, there were essentially no
differences by timing of mammogram in respect to the breast
cancer (<2 years vs. >2 years) [Data not shown].

The third example study also assessed the influence of
inter-patient acquisition parameters on the density associa-
tions within the MMHS study. FIG. 17 shows that adjustment
for these factors had little influence on the association
between either PD or V and breast cancer.

Discussion

An automated estimate of mammographic density (the
V-measure) is a risk factor for breast cancer in three epide-
miologic studies. In two studies, the V association was stron-
ger than PD, reflected in greater magnitude of risk estimates
for the highest two quartiles and greater discriminatory accu-
racy. The V-breast cancer association was not materially
influenced by acquisition parameters, and this association
was similar to that seen in the initial study of a calibrated V
measure and breast cancer using digital mammography or
FFDM. Taken together, the V measure may be a viable auto-
mated mammographic density measure that is consistent
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across film and digital platforms and has potential for trans-
lation to the clinical setting for risk estimations.

Several of the findings support the V measure being incor-
porated into future risk models. First, the V-breast cancer
association remains strong when assessed on mammograms
at least two years prior to diagnosis. Second, V can be mea-
sured from FFDM, the primary screening modality in the US,
and the association is similar to film mammograms. Thus, V
appears to be an important risk assessment tool across imag-
ing platforms. Next, the V measure provides better discrimi-
nation of breast cancer cases vs. controls in two of the three
studies. And, the magnitude of the AUC for these two studies
(including age, BMI and menopause) was 0.70 or above,
which is higher than that seen with the current Gail model
(C-index of 0.596) and breast cancer risk models incorporat-
ing PD estimates to date, with ranges of C-index from 0.

Although these studies showed V to perform as well as PD
in discrimination of risk, there was heterogeneity in results.
The MCBCS and MMHS studies showed improved discrimi-
nation of risk and increased relative risk estimates for the
upper quartiles while the MCMAM study found essentially
similar results. The reason for this heterogeneity is not clear.
The influence of several factors on the V-association across all
studies including age, menopausal status, mammogram time
period, type of digitizer, and type of cancer (invasive vs. in
situ) cancers was examined, but no explanation for these
differences between studies was found. One aspect that could
contribute to differences in discrimination was that MCMAM
was a closely matched case-control study; there is the poten-
tial that we overmatched on some factor related to the V
measure. Thus, that the V-measure performed as well as PD in
all three studies, but whether the V-measure is superior to PD
requires additional research.

Mammographic density has been studied for many years,
most often assessed as the amount or proportion of bright
tissue in a given image. Thus, a plausible case must be made
as to why a measure of variation (V) of this tissue is relevant
to breast cancer when it doesn’t represent the actual amount
or proportion. Evidence supporting the V measure can be
distilled from recent calibration work and from past texture
analyses. First, the calibrated V in FFDM was found to be a
function of the PD measure. Secondly, the V measure
includes both the low frequency features and fractal texture
measures that were investigated previously and found to
influence breast cancer. Thirdly, the V measure as well as the
texture measures are related to one of the earliest density
measures, the Wolfe parenchymal pattern, which has been
strongly associated with risk of breast cancer. This early work
was formulated by noting the variation in mammograms was
related to risk. Thus, the new V measure indirectly correlates
with percent density measures in the past, but the third
example study presents the first direct assessment of this
measure with breast cancer.

Strengths of this study include the validation of a novel
breast density measure across three well designed epidemi-
ology studies. The V-association was comparable to the PD-
association, and in two of three studies resulted in improved
risk discrimination, AUCs >0.70. V is automated and gener-
ated without thresholds or other detection related parameters.
As noted previously, the V can be measured in both film and
FFDM, and the corresponding associations have now been
shown to be similar.

In the study, there was limited follow-up in MCBCS
between mammograms and cancer diagnosis. However, the
non-cancerous breast was used for the analysis, which indi-
cates the cancer abnormalities are not responsible for the
association. Also, the V approach requires a consistent breast
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segmentation preprocessing stage, which is an easier task
using FFDM in comparison with digitized film, and FFDM
will be the screening modality most widely used. Finally,
pixel dynamic range, digital resolution, and varying digital
detector technologies may have an influence on'V estimation;
future research should evaluate this possibility.

The present disclosure references one or more publica-
tions. Hach of the references in the present disclosure is
incorporated herein by reference in its entirety. In addition, in
the above, all measures and combinations of measures may
include solely raw data or calibrated data, as well as a mixture
of raw and calibrated measures.

It will be seen that the advantages set forth above, and those
made apparent from the foregoing description, are efficiently
attained and since certain changes may be made in the above
construction without departing from the scope of the inven-
tion, it is intended that all matters contained in the foregoing
description or shown in the accompanying drawings shall be
interpreted as illustrative and not in a limiting sense.

It is also to be understood that the following claims are
intended to cover all of the generic and specific features of the
invention herein described, and all statements of the scope of
the invention which, as a matter of language, might be said to
fall there between.

What is claimed is:

1. A method of assessing breast density for breast cancer
risk applications, comprising:

receiving digital image data including a plurality of pixels;

calibrating the digital image data;

measuring a variation of pixel values of the calibrated

digital image data, wherein measuring a variation of
pixel values of the calibrated digital image data further
comprises at least one of calculating an 1> norm or order
derived therefrom or calculating an 1' norm or order
derived therefrom; and

associating the variation of pixel values with a measure of

risk for breast cancer, wherein the variation of pixel
values correlates with at least one of a relative risk for
breast cancer, an odds ratio for breast cancer, or an
absolute risk prediction for breast cancer.

2. The method of claim 1, wherein measuring a variation of
pixel values of the calibrated digital image data further com-
prises:

calculating an 1* norm or order derived therefrom;

calculating an 1' norm or order derived therefrom; and

calculating a combination of measures based on results of
the 12 norm or order derived therefrom and the 1% norm or
order derived therefrom.

3. The method of claim 2, wherein calculating a combina-
tion of measures further comprises at least one of using a
linear method, using a non-linear method, or using a Gram-
Schmidt orthogonalization process, Principal Component
Analysis, partial least squares or kernel-based method.

4. The method of claim 1, wherein calibrating the digital
image data further comprises adjusting for image acquisition
technique parameters by adjusting for atleast one of variation
in target/filter combination, x-ray tube voltage, radiation
exposure, or compressed breast thickness.

5. The method of claim 4, wherein calibrating the digital
image data is performed pixel-by-pixel.

6. The method of claim 4, wherein calibrating the digital
image data further comprises:

calculating an average pixel value of an nxn pixel region;

and

calibrating the average pixel value.
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7. The method of claim 1, wherein the digital image data
comprises an image having a breast tissue area and a back-
ground area, the method further comprising:

segmenting the breast tissue area from the background area

of the image.

8. The method of claim 7, further comprising:

assigning pixel values within the breast tissue area a first

value; and

assigning pixel values within the background area a second

value.

9. The method of claim 7, further comprising positioning a
radial coordinate system origin at a side of the image at a first
direction centroid position estimated from the segmented
image.

10. The method of claim 9, further comprising eroding a
percentage of the image between the radial coordinate system
origin and a perimeter of the breast area along a radial direc-
tion.

11. A method of assessing breast density for breast cancer
risk applications, comprising:

receiving digital image data including a plurality of pixels;

calibrating the digital image data;
measuring a variation of pixel values of the calibrated
digital image data, wherein measuring a variation of
pixel values of the calibrated digital image data further
comprises calculating the variation using an n” central
or non-central moment of an integer or a fractional order
or any real number order; and
associating the variation of pixel values with a measure of
risk for breast cancer, wherein the variation of pixel
values correlates with at least one of a relative risk for
breast cancer, an odds ratio for breast cancer, or an
absolute risk prediction for breast cancer.
12. The method of claim 11, wherein measuring a variation
of pixel values of the calibrated digital image data further
comprises:
calculating a first n central or non-central moment;
calculating a second n” central or non-central moment, the
second n” central or non-central moment being different
than the first n” central or non-central moment; and

calculating a combination of measures based on results of
the first and second n? central or non-central moments
using at least one of a linear method or a non-linear
method.
13. The method of claim 11, wherein calibrating the digital
image data further comprises adjusting for image acquisition
technique parameters by adjusting for at least one of variation
in target/filter combination, x-ray tube voltage, radiation
exposure, or compressed breast thickness.
14. A method of assessing breast density for breast cancer
risk applications, comprising:
receiving digital image data including a plurality of pixels;
measuring a variation of pixel values of the digital image
data, wherein measuring a variation of pixel values of
the digital image data further comprises at least one of
calculating an 1* norm or order derived therefrom or
calculating an 1' norm or order derived therefrom: and

associating the variation of pixel values with a measure of
risk for breast cancer, wherein the variation of pixel
values correlates with at least one of a relative risk for
breast cancer, an odds ratio for breast cancer, or an
absolute risk prediction for breast cancer.

15. The method of claim 14, wherein measuring a variation
of pixel values of the digital image data further comprises:

calculating an 1% norm or order derived therefrom;

calculating an 1' norm or order derived therefrom; and
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calculating a combination of measures based on results of
the 12 norm or order derived therefrom and the 1' norm or
order derived therefrom.

16. The method of claim 15, wherein calculating a combi-
nation of measures further comprises at least one of using a
linear method, using a non-linear method, or using a Gram-
Schmidt orthogonalization process, Principal Component
Analysis, partial least squares or kernel-based method.

17. The method of claim 14, wherein the digital image data
comprises an image having a breast tissue area and a back-
ground area, the method further comprising:

segmenting the breast tissue area from the background area

of the image.

18. The method of claim 17, further comprising:

assigning pixel values within the breast tissue area a first

value; and

assigning pixel values within the background area a second

value.

19. A method of assessing breast density for breast cancer
risk applications, comprising:

receiving digital image data including a plurality of pixels;

measuring a variation of pixel values of the digital image

data, wherein measuring a variation of pixel values of
the digital image data further comprises calculating the
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variation using an n” central or non-central moment of
an integer or a fractional order or any real number order;
and
associating the variation of pixel values with a measure of
risk for breast cancer, wherein the variation of pixel
values correlates with at least one of a relative risk for
breast cancer, an odds ratio for breast cancer, or an
absolute risk prediction for breast cancer.
20. The method of claim 19, wherein calculating a varia-
tion of pixel values of the digital image data further com-
prises:
calculating a first 0 central or non-central moment;
calculating a second n” central or non-central moment, the
second n” central or non-central moment being different
than the first n” central or non-central moment; and

calculating a combination of measures based on results of
the first and second n” central or non-central moments
using at least one of a linear method and a non-linear
method.

21. The method of claim 19, wherein the digital image data
comprises an image having a breast tissue area and a back-
ground area, the method further comprising:

segmenting the breast tissue area from the background area

of the image.



